A distinctive release profile of vancomycin and tobramycin from a new and injectable polymeric dicalcium phosphate dehydrate cement (P-DCPD)

Author:

Ren E J,Guardia A,Shi T,Begeman P,Ren WORCID,Vaidya R

Abstract

Abstract A novel injectable polymeric dicalcium phosphate dehydrate (P-DCPD) cement was developed with superior mechanical strength and excellent cohesion. The purpose of this study was to assess the in vitro performance of P-DCPD loaded with vancomycin (VAN-P), tobramycin (TOB-P) and combination of both (VAN/TOB-P) (10%, w/w). There is a distinctive release profile between VAN and TOB. VAN-P showed decreased initial burst (<30% within 3 d) and sustained VAN release (76% in 28 d). In the presence of TOB (VAN/TOB-P), >90% of VAN was released within 3 d (p < 0.05). Slow and limited TOB release was observed both in TOB-P (<5%) and in TOB/VAN-P (<1%) over 28 d. Zone of inhibition (ZOI) of Staphylococcus aureus growth showed that eluents collected from VAN-P had stronger and longer ZOI (28 d) than that from TOB-P (14 d, p < 0.05). Direct contact of VAN-P, TOB-P and VAN/TOB-P cements displayed persistent and strong ZOI for >3 weeks. Interestingly, the cement residues (28 d after drug release) still maintained strong ZOI ability. P-DCPD with or without antibiotics loading were nontoxic and had no inferior impacts on the growth of osteoblastic MC3T3 cells. VAN-P and TOB-P were injectable. No significant influence on setting time was observed in both VAN-P (11.7 ± 1.9 min) and VAN/TOB-P (10.8 ± 1.5 min) as compared to control (12.2 ± 2.6 min). We propose that a distinctive release profile of VAN and TOB observed is mainly due to different distribution pattern of VAN and TOB within P-DCPD matrix. A limited release of TOB might be due to the incorporation of TOB inside the crystalline lattice of P-DCPD crystals. Our data supported that the bactericidal efficacy of antibiotics-loaded P-DCPD is not only depend on the amount and velocity of antibiotics released, but also probably more on the direct contact of attached bacteria on the degrading cement surface.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3