In vitro model to study confined osteocyte networks exposed to flow-induced mechanical stimuli

Author:

Zhang Kairui,Ogando Courtney,Filip Alex,Zhang Teng,Horton Jason AORCID,Soman PranavORCID

Abstract

Abstract Osteocytes are considered the primary mechanical sensor in bone tissue and orchestrate the coupled bone remodeling activity of adjacent osteoblast and osteoclast cells. In vivo investigation of mechanically induced signal propagation through networks of interconnected osteocytes is confounded by their confinement within the mineralized bone matrix, which cannot be modeled in conventional culture systems. In this study, we developed a new model that mimics this in vivo confinement using gelatin methacrylate (GelMA) hydrogel or GelMA mineralized using osteoblast-like model cells. This model also enables real-time optical examination of osteocyte calcium (Ca2+) signaling dynamics in response to fluid shear stimuli cultured under confined conditions. Using this system, we discovered several distinct and previously undescribed patterns of Ca2+ responses that vary across networks of interconnected osteocytes as a function of space, time and connectivity. Heterogeneity in Ca2+ signaling may provide new insights into bone remodeling in response to mechanical loading. Overall, such a model can be extended to study signaling dynamics within cell networks exposed to flow-induced mechanical stimuli under confined conditions.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3