Abstract
Abstract
Bone defect is a common problem and inducing osteoblasts differentiation is the key process for the regenerative repair. Recently, the mesoporous silica (MS) coated nanohydroxyapatite (nHA) particles (nHA-MS) has shown enhanced intrinsic potency for bone regeneration, whereas whether the osteogenesis potency can be further enhanced after drug delivery has not been investigated. In this study, the nHA-MS was fabricated by a novel biphase stratification growth way. The cytotoxicity in MC3T3-E1 was validated by MTT assay, apoptosis analysis and cell cycle examination. The cell uptake was observed by confocal laser scanning microscope and transmission electron microscope respectively. After adsorption with dexamethasone (DEX), the osteogenic differentiation was determined both in vitro and in vivo. The synthesized nHA-MS showed a core–shell structure that the nanorod-like nHA was coated by a porous MS shell (∼5 nm pores diameter, ∼50 nm thickness). A dose-dependent cytotoxicity was observed and below 10 µg ml−1 was a safe concentration. The nHA-MS also showed efficient cell uptake efficiency and more efficient in DEX loading and release. After DEX adsorption, the nanoparticles exhibited enhanced osteogenic induction in MC3T3-E1 and rat calvarial bone defect regeneration. In conclusion, the nHA-MS is a favorable platform for drug delivery to obtain more enhanced osteogenesis capabilities.
Funder
Young Talent Fund of University Association for Science and Technology in Shaanxi, China
National Natural Science Foundation of China
Shaanxi Provincial Key Research and Development Plan Project
Subject
Biomedical Engineering,Biomaterials,Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献