The role of decellularized cell derived extracellular matrix in the establishment and culture of in vitro breast cancer tumor model

Author:

Tevlek AtakanORCID

Abstract

Abstract Decades of research have shown that two-dimensional cell culture studies are insufficient for preclinical cancer diagnosis and treatment, and that cancer cells in three-dimensional (3D) culture systems have better cell–cell and cell–matrix interactions, gene expression, heterogeneity, and structural complexity that more closely resemble in vivo tumors. Researchers are still optimizing 3D culturing settings for different cancers. Despite promising tumor spheroid research, tumor cell-only aggregates lack the tumor microenvironment and cannot model tumors. Here, MCF-7 breast cancer cell derived decellularized extracellular matrix (CD-dECMs) were obtained and converted into autologous, biologically active, biocompatible, and non-immunogenic hydrogels to be used as micro-environment in both organoid formation and culture. For the production of organoids, CD-dECM doping concentrations ranging from 0.1 mg ml−1 to 1.5 mg ml−1 were evaluated, and the lowest concentration was found to be the most effective. For organoid culture, 8 mg ml−1 CD-dECM, 4 mg ml−1 rat tendon collagen type I (Col I) (4 mg ml−1) and a 1:1 (v/v) mixture of these two were used and the most viable and the biggest organoids were discovered in CD-dECM/Col I (1:1) group. The results show that autologous CD-dECM can replace hydrogels in tumor organoid generation and culture at low and high concentrations, respectively.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3