Generation of graphene oxide and nano-bioglass based scaffold for bone tissue regeneration

Author:

Kumari Shikha,Singh Divakar,Srivastava PradeepORCID,Singh Bhisham Narayan,Mishra AbhaORCID

Abstract

Abstract Graphene oxide (GO) offers a distinct opportunity in the field of biomedical engineering owing to its exceptionally high mechanical strength, excellent electrical conductivity, high optical transparency, and favorable biocompatibility. In this article, nanocomposite biocompatible GO-based scaffolds (chitosan/gelatin/nanobioglass/GO) Ch-G-NBG-GO were successfully fabricated through freeze drying technique (−40 °C) and evaluated for various physico-chemical and biological properties. The prepared Ch-G-NBG-GO composites have been investigated for their structural, physiochemical, and surface morphology via x-ray diffraction (XRD), high resolution scanning electron microscope, Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), energy-dispersive x-ray Spectroscopy and, differential scanning colorimetry (DSC) respectively. The morphological analysis showed the porous interconnected network of scaffold formed. Average pore size for the Ch-G-NBG-GO scaffolds were in between 90 and 120 μm, which was very close to the control scaffolds. XRD data revealed the successful incorporation of NBG and GO and distribution across the scaffolds. Porosity of the fabricated scaffolds were in the range between 75.3% and 77.3% which was very close to the control scaffold with 79% porosity. The studies also reveal that after GO incorporation, the weight loss reduced (0.11 ± 0.02–0.095 ± 0.03), scaffolds were firmly stable at room temperature even after a long duration of 28 d. The crystallinity added to the scaffolds due to addition of GO nanoparticles improved the mechanical strength of these scaffolds. The compressive modulus changed from (5.7 to 8.51) MPa after GO addition. Swelling ratio changed drastically especially in case of Ch-NBG-90%GO (4.9 ± 0.04–4 ± 0.01). DSC and TGA data revealed the thermal stability of GO incorporated scaffolds due to the proper interaction between GO/NBG with chitosan-gelatin blend. The scaffold’s potential for bone tissue engineering was evaluated by testing its cytocompatibility for MG-63 cell line. It revealed suitable cell attachment and proliferation of cells compared to the Ch-G-NBG scaffold. MTT assay showed that Ch-G-NBG-GO scaffold below 90% GO concentration possess best biocompatibility. But in case of Ch-G-NBG-90%GO scaffold, the cell proliferation was reduced when compared to control scaffolds. Alkaline phosphatase activity suggested improved osteogenic differentiation of MG-63 cells over GO based scaffolds and this was due to the osteogenic potential of NBG and GO present in the scaffolds. Based on these results, the nano-biocomposite scaffold appears to have the potential for utilization in bone tissue restoration, replacement and regeneration.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Reference34 articles.

1. Introduction to the challenges of bone repair;Pawelec,2019

2. Biodegradable materials for bone repairs: a review;Tan;J. Mater. Sci. Technol.,2013

3. Review of bone graft and bone substitutes with an emphasis on fracture surgeries;Sohn;Biomater. Res.,2019

4. Biomaterials and their applications in medicine;Kulinets,2015

5. Sustainable biomaterials and their applications: a short review;Biswal;Mater. Today Proc.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3