Co electrospinning -poly (vinyl alcohol)-chitosan/gelatin-poly (ϵ-caprolacton) nanofibers for diabetic wound-healing application

Author:

Ranjbar-Mohammadi MarziyehORCID,Tajdar Farideh,Esmizadeh Elnaz,Arab ZahraORCID

Abstract

Abstract With the increasing prevalence of diabetes, the healing of diabetic wounds has become a significant challenge for both healthcare professionals and patients. Recognizing the urgent need for effective solutions, it is crucial to develop suitable scaffolds specifically tailored for diabetic wound healing. In line with this objective, we have developed novel hybrid nanofibrous scaffolds by combining polyvinyl alcohol/chitosan (PVA/CS) and gelatin/poly(ε-caprolactone) (Gel/PCL) polymers through a double-nozzle electrospinning technique. In this study, we investigated the influence of the Gel/PCL blend ratio on the properties of the resulting nanofibers. Three different hybrid scaffold structures were examined: Gel/PCL (80:20)-PVA/CS (80:20), Gel/PCL (50:50)-PVA/CS (80:20), and Gel/PVA (20:80)-PVA/CS (80:20). Our findings demonstrate that the electrospun nanofibers of PVA/CS (80:20)-Gel/PCL (80:20) exhibited optimal mechanical performance, with a contact angle of approximately 54° and a diameter of 183 nm. Considering the crucial role of inhibiting bacterial adhesion in the success of implanted materials, we evaluated the cytocompatibility of the hybrid electrospun nanofibers using mouse fibroblast cells (L-929 cells). The in vitro cytotoxicity results obtained from L-929 fibroblast cell culture on the hybrid scaffolds revealed enhanced cell proliferation and appropriate cell morphology on the PVA/CS (80:20)-Gel/PCL (80:20) sample, indicating its capability to support tissue cell integration. Based on the information obtained from this study, the fabricated hybrid scaffold holds great promise for diabetic ulcer healing. Its optimal mechanical properties, suitable contact angle, and favorable cytocompatibility highlight its potential as a valuable tool in the field of diabetic wound healing. The development of such hybrid scaffolds represents a significant step forward in addressing the challenges associated with diabetic wound care.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3