Marine collagen-chitosan-fucoidan cryogels as cell-laden biocomposites envisaging tissue engineering

Author:

Carvalho Duarte NunoORCID,López-Cebral Rita,Sousa Rita O,Alves Ana L,Reys Lara L,Silva Simone S,Oliveira J MiguelORCID,Reis Rui L,Silva Tiago HORCID

Abstract

Abstract The combination of marine origin biopolymers for tissue engineering (TE) applications is of high interest, due to their similarities with the proteins and polysaccharides present in the extracellular matrix of different human tissues. This manuscript reports on innovative collagen-chitosan-fucoidan cryogels formed by the simultaneous blending of these three marine polymers in a chemical-free crosslinking approach. The physicochemical characterization of marine biopolymers comprised FTIR, amino acid analysis, circular dichroism and SDS-PAGE, and suggested that the jellyfish collagen used in the cryogels was not denatured (preserved the triple helical structure) and had similarities with type II collagen. The chitosan presented a high deacetylation degree (90.1%) that can strongly influence the polymer physicochemical properties and biomaterial formation. By its turn, rheology, and SEM studies confirmed that these novel cryogels present interesting properties for TE purposes, such as effective blending of biopolymers without visible material segregation, mechanical stability (strong viscoelastic character), as well as adequate porosity to support cell proliferation and exchange of nutrients and waste products. Additionally, in vitro cellular assessments of all cryogel formulations revealed a non-cytotoxic behavior. The MTS test, live/dead assay and cell morphology assessment (phalloidin DAPI) showed that cryogels can provide a proper microenvironment for cell culturing, supporting cell viability and promoting cell proliferation. Overall, the obtained results suggest that the novel collagen-chitosan-fucoidan cryogels herein presented are promising scaffolds envisaging tissue engineering purposes, as both acellular biomaterials or cell-laden cryogels.

Funder

FP7 Nanosciences, Nanotechnologies, Materials and new Production Technologies

European Regional Development Fund

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3