Calcium silicate biocomposites: effects of selenium oxide on the physico-mechanical features and their in-vitro biological assessments

Author:

S Sakthi @ Muthulakshmi,S ShailajhaORCID,B Shanmugapriya,K Chidhambara Priya Dharshini

Abstract

Abstract Bone tissue regenerative material serves as a prospective recovery candidate with self-adaptable biological properties of bio-activation, degradability, compatibility, and antimicrobial efficacy instead of metallic implants. Such materials are highly expensive due to chemical reagents and complex synthesis procedures, making them unaffordable for patients with financial constraints. This research produced an efficient bone tissue regenerative material using inexpensive naturally occurring source materials, including silica sand and limestone. The extracted SiO2 and CaO particles (75:25 wt%) were subjected to hydrothermal synthesis (water treatment instead of chemical solvents) to produce the CaSiO3 biomaterial (code: S). Selenium oxide was doped with calcium silicate at 3, 5, and 10 wt.% to enhance its properties, yielding biocomposite materials (i.e. S3, S5, and S10). The physico-mechanical properties of these materials were investigated with x-ray diffraction, Fourier transform infrared, FESEM-EDS, and micro-universal testing machine. The results revealed that the synthesized biocomposites have a crystalline wollastonite phase with a porously fused rough surface. From structural parametric calculations, we found that the biocomposites have reduced particle size and enhanced surface area due to the influence of selenium oxide. The biocomposite S10, having high SeO2 content, attained the maximum compressive strength of 75.2 MPa. In-vitro studies of bioactivity, biodegradability, biocompatibility, and antibacterial activity were performed. At 7 and 14 d of bioactivity, the synthesized biocomposites are capable of dissolving their ions into simulated body fluid (SBF) solution to precipitate hydroxyapatite and a required Ca/P ratio of 1.69 was achieved by S3. A comparative analysis has been performed on the degradation activity in Tris-HCl and the consequent pH changes during SBF treatment. The bio-analysis revealed that the biocomposite S3 shows enhanced bioactivity through a controlled degradation rate and secured cell viability of 88% at a concentration of 100 μg ml−1. It also offers significant bacterial inhibition potency against E.coli and S.aureus bacteria.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3