Abstract
Abstract
Magnesium and its alloys have the potential to serve as a revolutionary class of biodegradable materials, specifically in the field of degradable implants for orthopedics. However, the corrosion rate of commercially pure magnesium is high and does not match the rate of regeneration of bone tissues. In this work, magnesium alloys containing zinc and cerium, either alone or in combination, were investigated and compared with commercially-pure magnesium as biomaterials. The microstructure, mechanical properties, corrosion resistance, and response of osteoblasts in vitro were systematically assessed. Results reveal that alloying with Ce results in grain refinement and weakening of texture. The tensile test revealed that the ternary alloy offered the best combination of elastic modulus (41.1 ± 0.5 GPa), tensile strength (234.5 ± 4.5 MPa), and elongation to break (17.1 ± 0.4%). The ternary alloy was also the most resistant to corrosion (current of 0.85 ± 0.05 × 10−4 A cm−2) in simulated body fluid than the other alloys. The response of MC3T3-E1 cells in vitro revealed that the ternary alloy imparts minimal cytotoxicity. Interestingly, the ternary alloy was highly efficient in supporting osteogenic differentiation, as revealed by the expression of alkaline phosphatase and calcium deposition. In summary, the extruded Mg alloy containing both Zn and Ce exhibits a combination of mechanical properties, corrosion resistance, and cell response that is highly attractive for engineering biodegradable orthopedic implants.
Funder
Department of Science and Technology, Ministry of Science and Technology, India
Department of Biotechnology , Ministry of Science and Technology
Subject
Biomedical Engineering,Biomaterials,Bioengineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献