Production and characterization of a coconut oil incorporated gelatin-based film and its potential biomedical application

Author:

Karamanlioglu MehlikaORCID,Yesilkir-Baydar SerapORCID

Abstract

AbstractThe influence of coconut oil (CO) on a gelatin-based film was investigated when used as a potential wound dressing material. There is limited study on CO in protein-based wound dressing materials. Therefore, in this study a self-supporting, continuous and homogenous CO incorporated gelatin-based film was formulated and obtained by solution casting method. The influence of CO on physicochemical and thermal properties of gelatin-based film was also determined. Moreover, the effect CO in gelatin films on cell viability and cell migration was analysed with a preliminary cell culture study. Homogenous dispersion of 10% (w/w) CO was obtained in films when 3% (v/w) Tween 80, a surfactant, was incorporated to 20% (w/w) plasticized gelatin film forming solution. Effect of CO on gelatin-based film was observed via phase separation by scanning electron microscopy analysis. Water uptake of gelatin film with no CO, GE film; and 10% (w/w) CO incorporated GE film, GE-CO, were 320% and 210%, respectively, after 3 h in water. Fourier transform infrared spectroscopy analysis showed triglyceride component of CO and increased hydrogen bonding between NH groups of gelatin in GE-CO films. Differential scanning calorimetry results suggested a more ordered structure of GE-CO film due to an increase in melt-like transition temperature and melting enthalpy of GE-CO film. CO content also increased cell viability, assessed by XTT assay since cell viability was approximately 100% when L929 cell culture was incubated with GE-CO of 5–100 μg ml−1. Moreover, GE-CO samples within 5–25 μg ml−1concentration range, increased proliferation of L929 cells since cell viability was significantly higher than the 100% viable cell culture control (P< 0.05) which is also an indication of efficient healing. However, GE decreased viability of L929 cells significantly at 100–10 μg ml−1concentration range (P< 0.05) and were toxic at concentrations of 100, 75 and 50 μg ml−1which decreased ∼50% of the viability of the cells. Scratch Assay to assessin vitrowound healing showed cell migration towards scratch after 24 h as an indication of wound healing only in GE-CO samples. This study showed that, CO could efficiently be added to gelatin-based films for preparation of a primary wound dressing biomaterial which is also demonstrated to have a promising wound healing effect for minor wounds.

Funder

Istanbul Gelişim University Scientific Research Projects Application and Research Center

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3