Exosomes derived from magnesium ion—stimulated macrophages inhibit angiogenesis

Author:

Hang RuiqiangORCID,Tian Xue,Qu Guangping,Zhao YuyuORCID,Yao Runhua,Zhang Yi,Wei Wenfa,Yao Xiaohong,Chu Paul K

Abstract

Abstract Angiogenesis, an essential prerequisite to osteogenesis in bone repair and regeneration, can be mediated by immunoregulation of macrophages. Magnesium and its alloys are promising biodegradable bone implant materials and can affect immunoregulation of macrophages by the degradation products (magnesium ions). Nevertheless, the mechanism of macrophage-derived exosomes stimulated by Mg ions in immunoregulation is still not well understood. Herein, 10–50 mM magnesium ions are shown to inhibit the macrophage viability and proliferation in a dose-dependent manner, but a high concentration results in macrophage apoptosis. The exosomes secreted by macrophages from magnesium ion stimulation inhibit angiogenesis of endothelial cells, as manifested by the suppressed cell viability, proliferation, migration, and tube formation, which arise at least partially from exosome-mediated downregulation of endothelial nitric oxide and the vascular endothelial growth factor. The findings reported in this paper suggest that the bio-functionality of biodegradable magnesium alloys must be considered from the perspective of immunoregulation of macrophage-derived exosomes. Our results also suggest potential cancer therapy by inhibiting tumor-associated angiogenesis.

Funder

City University of Hong Kong Strategic Research Grant

Central Leading Science and Technology Development Foundation of Shanxi Province

Natural Science Foundation of Shanxi Province

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Reference46 articles.

1. Skeletal blood flow in bone repair and maintenance;Tomlinson;Bone Res.,2013

2. Role of vascular factors in osteoporosis;Alagiakrishnan;J. Gerontol. A,2003

3. Osteonecrosis: death of bone cells;Childs;Orthop. Nurs.,2005

4. Angiogenesis in fracture repair;Glowacki;Clin. Orthop. Relat. R.,1998

5. Fracture healing: mechanisms and interventions;Einhorn;Nat. Rev. Rheumatol.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3