Abstract
Abstract
Biointegration of a keratoprosthesis (KPro) is critical for the device stability and long-term retention. Biointegration of the KPro device and host tissue takes place between the surrounding corneal graft and the central optic (made by poly (methyl methacrylate)). Our previous clinical results showed that auricular cartilage reinforcement is able to enhance the KPro biointegration. However, the auricular cartilage is non-renewable and difficult to acquire. In this study, we developed a novel type of biomaterial using a three-dimensional porous polyethylene glycol acrylate scaffold (3D biological P-scaffold) carrier with chondrocytes differentiated from induced human umbilical cord mesenchymal stem cells (hUC-MSCs) and tested in rabbit corneas. The results showed hUC-MSCs bear stem cell properties and coule be induced into chondrocytes, P-scaffold is beneficial to the growth and differentiation of hUC-MSCs both in vivo and in vitro. Besides, after implanting the P-scaffold into the corneal stroma, no serious immune rejection response, such as corneal ulcer or perforation were seen, suggested a good biocompatibility of P-scaffold with the corneal tissue. Moreover, after implanting P-scaffold in together with the differentiated chondrocytes into the rabbit corneal stroma, they significantly increased corneal thickness and strengthened the host cornea, and chondrocytes could stably persist inside the cornea. In summary, the 3D biological P-scaffold carrying differentiated hUC-MSCs could be the preferable material for KPro reinforcement.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Subject
Biomedical Engineering,Biomaterials,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献