Generation and integration of hair follicle-primed spheroids in bioengineered skin constructs

Author:

Tan Chew TengORCID,Leo Zhenn Yi,Lim Chin YanORCID

Abstract

Abstract Skin is a complex organ made up of different cell layers, appendages, connective tissues, and immune repertoires. These different components interact extensively to maintain the overall functions of the integumentary system. In particular, appendages such as hair follicles critically contribute to the skin’s function in thermoregulation, sensory perception, and homeostatic regeneration. Despite a strong need for better skin regenerative therapeutics, efforts to bio-engineer highly functional appendage-containing human reconstituted skin in vitro have not yielded much success. Here, we report methods in generating and incorporating hair follicle-primed heterotypic spheroids into epidermal-dermal skin constructs that induced invaginating outgrowths with follicle-like organization and lineage gene expression. By co-culturing epithelial keratinocytes (KCs) with dermal papilla (DP) cells in low attachment plates, we established the media and culture conditions that best supported the viability, signalling and remodelling of the cell aggregates to form 3D KC-DP spheroids with the expression of both DP inductiveness and hair follicle lineage genes. We show that long-term growth and maturation of KC cells in these spheroids was supported by incorporation into epidermal-dermal constructs but not in scaffold-less media. When cultured, the bio-fabricated constructs developed invaginations from the integrated spheroids with follicle-forming potential. The generation of these constructs is a step towards the development of functional hair-bearing skin mimetics.

Funder

A*STAR Advanced Manufacturing and Engineering (AME) programmatic grant

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Reference25 articles.

1. Tissue engineering of human hair follicles using a biomimetic developmental approach;Abaci;Nat. Commun.,2018

2. Focus: skin: unraveling immune-epithelial interactions in skin homeostasis and injury;Mansfield;Yale J. Biol. Med.,2020

3. Reconstructed human skin shows epidermal invagination towards integrated neopapillae indicating early hair follicle formation in vitro;Vahav;J. Tissue Eng. Regen. Med.,2020

4. Recreation of a hair follicle regenerative microenvironment: successes and pitfalls;Abreu;Bioeng. Transl. Med.,2022

5. Hair follicle dermal papilla cells at a glance;Driskell;J. Cell Sci.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Innovative Approaches and Advances for Hair Follicle Regeneration;ACS Biomaterials Science & Engineering;2023-04-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3