Abstract
Abstract
Many growth factors have been paired with synthetic bone grafts to accelerate the healing process in vivo. Collagen has been particularly examined as a mediator of the enhancement of bone regeneration. This study investigated the new bone formation potential of micro–macroporous biphasic calcium phosphate (m-BCP), high porosity biphasic calcium phosphate (p-BCP), and collagen-coated p-BCP (cp-BCP) using a rabbit calvarial defect model. At 2 or 8 weeks after surgery, bone tissue was collected. The three-dimensional analysis of new bone formation using synchrotron radiation micro-computed tomography and histological study were conducted. The new bone formation values observed at 2 and 8 weeks in the negative control, m-BCP, p-BCP, and cp-BCP groups were 11.21 ± 1.36 mm3, 21.75 ± 1.18 mm3, 24.59 ± 1.26 mm3, and 29.54 ± 2.72 mm3, respectively, and 18.34 ± 3.99 mm3, 32.27 ± 3.78 mm3, 43.12 ± 1.61 mm3, and 58.20 ± 3.84 mm3, respectively. New bone formation was greatest in the cp-BCP group, while the amount of new bone at 8 weeks was higher than at 2 weeks in each group. The use of cp-BCP to enhance new bone formation during the healing period could improve bone regeneration.
Funder
Korea Institute for Advancement of Technology
National Research Foundation of Korea
Subject
Biomedical Engineering,Biomaterials,Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献