Mesoporous zirconia surfaces with anti-biofilm properties for dental implants

Author:

D’Agostino Agnese,Tana Francesca,Ettorre Alessandro,Pavarini Matteo,Serafini Andrea,Cochis Andrea,Scalia Alessandro Calogero,Rimondini Lia,De Giglio Elvira,Cometa Stefania,Chiesa RobertoORCID,De Nardo Luigi

Abstract

Abstract Cytocompatible bioactive surface treatments conferring antibacterial properties to osseointegrated dental implants are highly requested to prevent bacteria-related peri-implantitis. Here we focus on a newly designed family of mesoporous coatings based on zirconia (ZrO2) microstructure doped with gallium (Ga), exploiting its antibacterial and pro-osseo-integrative properties. The ZrO2 films were obtained via sol–gel synthesis route using Pluronic F127 as templating agent, while Ga doping was gained by introducing gallium nitrate hydrate. Chemical characterization by means of x-ray photoelectron spectroscopy and glow discharge optical emission spectroscopy confirmed the effective incorporation of Ga. Then, coatings morphological and structural analysis were carried out by transmission electron microscopy and selected area electron diffraction unveiling an effective stabilization of both the mesoporous structure and the tetragonal ZrO2 phase. Specimens’ cytocompatibility was confirmed towards gingival fibroblast and osteoblasts progenitors cultivated directly onto the coatings showing comparable metabolic activity and morphology in respect to controls cultivated on polystyrene. The presence of Ga significantly reduced the metabolic activity of the adhered oral pathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans in comparison to untreated bulk zirconia (p < 0.05); on the opposite, Ga ions did not significantly reduce the metabolism of the oral commensal Streptococcus salivarius (p > 0.05) thus suggesting for a selective anti-pathogens activity. Finally, the coatings’ ability to preserve cells from bacterial infection was proved in a co-culture method where cells and bacteria were cultivated in the same environment: the presence of Ga determined a significant reduction of the bacteria viability while allowing at the same time for cells proliferation. In conclusion, the here developed coatings not only demonstrated to satisfy the requested antibacterial and cytocompatibility properties, but also being promising candidates for the improvement of implantable devices in the field of implant dentistry.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3