3D printing of Ti3C2-MXene-incorporated composite scaffolds for accelerated bone regeneration

Author:

Mi Xue,Su Zhenya,Fu Yu,Li Shiqi,Mo AnchunORCID

Abstract

Abstract Grafting of bone-substitute biomaterials plays a vital role in the reconstruction of bone defects. However, the design of bioscaffolds with osteoinductive agents and biomimetic structures for regeneration of critical-sized bone defects is difficult. Ti3C2 MXene—belonging to a new class of 2D nanomaterials—exhibits excellent biocompatibility, and antibacterial properties, and promotes osteogenesis. However, its application in preparing 3D-printed tissue-engineered bone scaffolds for repairing bone defects has not been explored. In this work, Ti3C2 MXene was incorporated into composite scaffolds composed of hydroxyapatite and sodium alginate via extrusion-based 3D printing to evaluate its potential in bone regeneration. MXene composite scaffolds were fabricated and characterized by SEM, XPS, mechanical properties and porosity. The biocompatibility and osteoinductivity of MXene composite scaffolds were evaluated by cell adhesion, cell counting kit-8 test, quantitative real-time polymerase chain reaction, alkaline phosphatase activity and alizarin red S tests of bone mesenchymal stem cells (BMSCs). A rat calvarial defect model was performed to explore the osteogenic activity of the MXene composite scaffolds in vivo. The results showed the obtained scaffold had a uniform structure, macropore morphology, and high mechanical strength. In vitro experimental results revealed that the scaffold exhibited excellent biocompatibility with BMSCs, promoted cell proliferation, upregulated osteogenic gene expression, enhanced alkaline phosphatase activity, and promoted mineralized-nodule formation. The experimental results confirmed that the scaffold effectively promoted bone regeneration in a model of critical-sized calvarial- bone-defect in vivo and promoted bone healing to a significantly greater degree than scaffolds without added Ti3C2 MXene did. Conclusively, the Ti3C2 MXene composite 3D-printed scaffolds are promising for clinical bone defect treatment, and the results of this study provide a theoretical basis for the development of practical applications for tissue-engineered bone scaffolds.

Funder

The Key Research and Development Program of Sichuan Province

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3