Investigations of an organic–inorganic nanotheranostic hybrid for pancreatic cancer therapy using cancer-in-a-dish and in vivo models

Author:

David Karolyn Infanta,Ravikumar T S,Sethuraman SwaminathanORCID,Krishnan Uma MaheswariORCID

Abstract

Abstract The incidence of highly aggressive pancreatic cancer is increasing across the globe and is projected to increase to 18.6% by 2050. The mortality rate for this form of cancer is very high and the 5 y relative survival rate is only about 9%–10%. The 3D pancreatic cancer microenvironment exerts a major influence on the poor survival rate. A key factor is the prevention of the penetration of the chemotherapeutic drugs in the three-dimensional (3D) microenvironment leading to the development of chemoresistance which is a major contributor to the survival rates. Hence, in vitro studies using 3D cultures represent a better approach to understand the effect of therapeutic formulations on the cancer cells when compared to conventional 2D cultures. In the present study, we have explored three different conditions for the development of a 3D pancreatic tumour spheroid model from MiaPaCa-2 and PanC1 cells cultured for 10 days using Matrigel matrix. This optimized spheroid model was employed to evaluate a multi-functional nanotheranostic system fabricated using chitosan nanoparticles co-encapsulated with the chemotherapeutic agent gemcitabine and gold-capped iron oxide nanoparticles for multimodal imaging. The effect of the single and multiple-dose regimens of the theranostic system on the viability of 3D spheroids formed from the two pancreatic cancer cell lines was studied. It was observed that the 3D tumour spheroids cultured for 10 days exhibited resistance towards free gemcitabine drug, unlike the 2D culture. The administration of the multifunctional nanotheranostic system on alternate days effectively reduced the cancer cell viability after five doses to about 20% when compared with other groups. The repeated doses of the nanotheranostic system were found to be more effective than the single dose. Cell line-based differences in internalization of the carrier was also reflected in their response to the nanocarrier with PanC1 showing better sensitivity to the treatment. In vivo studies revealed that the combination of gemcitabine and magnetic field induced hypothermia produced superior regression in cancer when compared with the chemotherapeutic agent alone by a combination of activating the pro-apoptotic pathway and heat-induced necrosis. Our results reveal that this multi-functional system holds promise to overcome the current challenges to treat pancreatic cancers.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3