Gelatin methacryloyl is a slow degrading material allowing vascularization and long-term use in vivo

Author:

Heltmann-Meyer StefanieORCID,Steiner DominikORCID,Müller Claudia,Schneidereit DominikORCID,Friedrich Oliver,Salehi SaharORCID,Engel Felix B,Arkudas Andreas,Horch Raymund E

Abstract

Abstract In situ tissue engineering is an emerging field aiming at the generation of ready-to-use three-dimensional tissues. One solution to supply a proper vascularization of larger tissues to provide oxygen and nutrients is the arteriovenous loop (AVL) model. However, for this model, suitable scaffold materials are needed that are biocompatible/non-immunogenic, slowly degradable, and allow vascularization. Here, we investigate the suitability of the known gelatin methacryloyl (GelMA)-based hydrogel for in-situ tissue engineering utilizing the AVL model. Rat AVLs are embedded by two layers of GelMA hydrogel in an inert PTFE chamber and implanted in the groin. Constructs were explanted after 2 or 4 weeks and analyzed. For this purpose, gross morphological, histological, and multiphoton microscopic analysis were performed. Immune response was analyzed based on anti-CD68 and anti-CD163 staining of immune cells. The occurrence of matrix degradation was assayed by anti-MMP3 staining. Vascularization was analyzed by anti-α-smooth muscle actin staining, multiphoton microscopy, as well as expression analysis of 53 angiogenesis-related proteins utilizing a proteome profiler angiogenesis array kit. Here we show that GelMA hydrogels are stable for at least 4 weeks in the rat AVL model. Furthermore, our data indicate that GelMA hydrogels are biocompatible. Finally, we provide evidence that GelMA hydrogels in the AVL model allow connective tissue formation, as well as vascularization, introducing multiphoton microscopy as a new methodology to visualize neovessel formation originating from the AVL. GelMA is a suitable material for in situ and in vivo TE in the AVL model.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3