Zirconium-based metallic glass and zirconia coatings to inhibit bone formation on titanium

Author:

Rajan S Thanka,V V Anusha Thampi,Terada-Nakaishi Michiko,Chen Peng,Hanawa Takao,Nandakumar A K,Subramanian BORCID

Abstract

Abstract Surface-modified commercially pure titanium (Cp-Ti) with zirconium (Zr)-based thin film metallic glasses (Zr-TFMGs) and ZrO2 thin films were surgically implanted into the tibiae of rats; the bone formation was analyzed to examine the performance of the coatings as a biomaterial. Zr-TFMGs and ZrO2 thin films were coated on Cp-Ti substrates to monitor the control of assimilation in vitro and in vivo. The microstructural and elemental analyses were carried out for the as deposited thin films by x-ray diffraction (XRD), transmission electron microscopy and x-ray photoelectron spectroscopy. TFMG- and ZrO2-coated Ti specimens were immersed in simulated body fluid (SBF) for a period of 21 days to evaluate the calcium phosphate precipitation in vitro. XRD, x-ray photoelectron spectroscopy and scanning electron microscopy/energy dispersive x-ray spectroscopy were used to quantify the mineralization on the coated Zr-TFMG and ZrO2. In vitro corrosion studies showed that the Zr-based TFMG and ZrO2 coatings sustained in the SBF, exhibited superior corrosion resistance to the bare crystalline Ti substrate. Wettability studies showed TFMG and ZrO2 coatings with a hydrophobic nature, and the TFMG-coated SBF-submerged specimens showed a hydrophilic nature. The in vitro cell viability of MC3T3-E1 cells showed good cell proliferation and low cytotoxicity. The calcification deposits were evaluated by staining with alizarin red S, which showed a lower calcium formation on Zr-TFMG compared to ZrO2. The present work also aims to assess the assimilation behavior of Cp-Ti, Zr-TFMG and ZrO2 in vivo by inserting the coated specimen in the femur of rats. After post-implantation of 8 weeks, specimens were examined by micro-CT evaluation. The bone contact ratios as calculated were 72.75%, 15.32% and 38.79%. Consequently, the bone affinity was Cp-Ti wire >ZrO2-coated Ti wire >Zr48Cu36Ag8Al8-coated Ti wire.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3