Optimized silk fibroin nanoparticle functionalization with anti-CEA nanobody enhancing active targeting of colorectal cancer cells

Author:

Fan XiyingORCID,Peng Xinying,Wang Tingting,Gu Yi,Sun Guochuan,Shou Qinghui,Song Haipeng,Nian Rui,Liu Wenshuai

Abstract

Abstract This work aimed to establish a simple and feasible method to obtain silk fibroin nanoparticles (SFNPs) with uniform particles size, and then modify the SFNPs with nanobody (Nb) 11C12 targeting the proximal membrane end of carcinoembryonic antigen on the surface of colorectal cancer (CRC) cells. The regenerated silk fibroin (SF) was isolated using ultrafiltration tubes with a 50 kDa molecular weight cut-off, and the retention fraction (named as SF > 50 kDa) was further self-assembled into SFNPs by ethanol induction. Scanning electron microscope (SEM) and high-resolution transmission electron microscop showed that the SFNPs with uniform particles size were formed. Due to electrostatic adsorption and pH responsiveness, SFNPs have been proved to effectively load and release the anticancer drug doxorubicin hydrochloride (DOX) (DOX@SFNPs). Further, targeting molecule Nb 11C12 was used to modify these nanoparticles, constituting the targeted outer layer of the drug delivery system (DOX@SFNPs-11C12), achieving precise localization to cancer cells. The release amount of DOX observed from in vitro drug release profiles increased as follows: pH 7.4 < pH 6.8 < pH 5.4, demonstrating that the DOX release could be accelerated in a weakly acidic environment. In vitro cytotoxicity experiments displayed that SFNPs-11C12 nanoparticles exhibited good safety and biocompatibility. Drug-loaded nanoparticles, DOX@SFNPs-11C12, led to higher LoVo cells apoptosis compared to DOX@SFNPs. Fluorescence spectrophotometer characterization and confocal laser scanning microscopy further showed that the internalization of DOX was highest in the DOX@SFNPs-11C12, certifying that the introduced targeting molecule enhanced the uptake of drug delivery system by LoVo cells. This study provides a simple and operational approach to developing an optimized SFNPs drug delivery system modified by targeting Nb, which can be a good candidate for CRC therapy.

Funder

Shandong Energy Institute

Natural Science Foundation of Shandong Province

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3