Abstract
Abstract
Traditional cell culture methods often fail to accurately replicate the intricate microenvironments crucial for studying specific cell growth patterns. In our study, we developed a 4D cell culture model—a precision instrument comprising an electromagnet, a force transducer, and a cantilever bracket. The experimental setup involves placing a Petri dish above the electromagnet, where gel beads encapsulating magnetic nanoparticles and tongue cancer cells are positioned. In this model, a magnetic force is generated on the magnetic nanoparticles in the culture medium to drive the gel to move and deform when the magnet is energized, thereby exerting an external force on the cells. This setup can mimic the microenvironment of tongue squamous cell carcinoma CAL-27 cells under mechanical stress induced by tongue movements. Electron microscopy and rheological analysis were performed on the hydrogels to confirm the porosity of alginate and its favorable viscoelastic properties. Additionally, Calcein-AM/PI staining was conducted to verify the biosafety of the hydrogel culture system. It mimics the microenvironment where tongue squamous cell carcinoma CAL-27 cells are stimulated by mechanical stress during tongue movement. Electron microscopy and rheological analysis experiments were conducted on hydrogels to assess the porosity of alginate and its viscoelastic properties. Calcein-AM/PI staining was performed to evaluate the biosafety of the hydrogel culture system. We confirmed that the proliferation of CAL-27 tongue squamous cells significantly increased with increased matrix stiffness after 5 d as assessed by MTT. After 15 d of incubation, the tumor spheroid diameter of the 1%-4D group was larger than that of the hydrogel-only culture. The Transwell assay demonstrated that mechanical stress stimulation and increased matrix stiffness could enhance cell aggressiveness. Flow cytometry experiments revealed a decrease in the number of cells in the resting or growth phase (G0/G1 phase), coupled with an increase in the proportion of cells in the preparation-for-division phase (G2/M phase). RT-PCR confirmed decreased expression levels of P53 and integrin β3 RNA in the 1%-4D group after 21 d of 4D culture, alongside significant increases in the expression levels of Kindlin-2 and integrin αv. Immunofluorescence assays confirmed that 4D culture enhances tissue oxygenation and diminishes nuclear aggregation of HIF-1α. This device mimics the microenvironment of tongue cancer cells under mechanical force and increased matrix hardness during tongue movement, faithfully reproducing cell growth in vivo, and offering a solid foundation for further research on the pathogenic matrix of tongue cancer and drug treatments.
Funder
Research and Innovation Fund of the First Affiliated Hospital of Harbin Medical University