Vitexin loaded mixed polymeric micelles: preparation, optimization, evaluation and anti-osteoporotic effect

Author:

Zhang JianORCID,Li Xiaoxiao,Xia Xiaoli,Adu-Frimpong Michael,Shen Xinyi,He Qing,Rong Wanjing,Shi Feng,Cao Xia,Ji Hao,Toreniyazov Elmurat,Wang Qilong,Yu Jiangnan,Xu Ximing

Abstract

Abstract In this regard, we developed vitexin (Vi)-loaded D-ɑ-tocopherol polyethylene glycol succinate, polyvinylpyrrolidone K30 and sodium cholate mixed micelles (Vi-MMs) mainly for improving oral bioavailability and enhancing anti-osteoporotic effect of Vi. Thin layer dispersion method was employed to prepare Vi-MMs, and then the optimal prescription was optimized by the orthogonal design-response surface method, wherein encapsulation efficiency (EE) was used as optimizing index. The physical properties of Vi-MMs such as appearance morphology, particle size, and zeta potential were also characterized. We further analyzed the in-vitro release of Vi and Vi-MMs in three media and investigated the pharmacokinetics of Vi and Vi-MMs in rats. Anti-osteoporotic activity of Vi and Vi-MMs was assessed by establishing a zebrafish osteoporosis model with prednisone. Drug loading, EE, particle size and zeta potential of the optimized Vi-MMs were 8.58 ± 0.13%, 93.86 ± 1.79%, 20.41 ± 0.64 nm and −10 ± 0.56 mV, respectively. The optimized Vi-MMs were shaped spherically as exhibited by transmission electron microscopic technique, with evident core shell nano-structure, well dispersed. In all three media, the release rate of Vi-MMs was significantly higher than that of free Vi. The oral bioavailability of Vi-MMs was increased by 5.6-fold compared to free Vi. In addition, alleviation of prednisone induced osteoporosis in zebrafish by Vi-MMs further demonstrated good anti-osteoporotic effect. In summary, Vi-MMs exhibited enhanced bioavailability and anti-osteoporotic effect, which is expected to be potential nanocarrier for Vi applications in drug development.

Funder

National Key R&D Program of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation Jiangsu Universities

Jiangsu Postdoctoral Research Foundation

Key planning social development projects of Zhenjiang in Jiangsu Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3