The construction of a self-assembled coating with chitosan-grafted reduced graphene oxide on porous calcium polyphosphate scaffolds for bone tissue engineering

Author:

Ding Hongmei,Peng Xu,Yu Xiaoshuang,Hu Mengyue,Wan Chang,Lei Ningning,Luo Yihao,Yu XixunORCID

Abstract

Abstract Bone regeneration in large bone defects remains one of the major challenges in orthopedic surgery. Calcium polyphosphate (CPP) scaffolds possess excellent biocompatibility and exhibits good bone ingrowth. However, the present CPP scaffolds lack enough osteoinductive activity to facilitate bone regeneration at bone defects that exceed the critical size threshold. To endow CPP scaffolds with improved osteoinductive activity for better bone regeneration, in this study, a self-assembled coating with chitosan-grafted reduced graphene oxide (CS-rGO) sheets was successfully constructed onto the surface of CPP scaffolds through strong electrostatic interaction and hydrogen bonds. Our results showed that the obtained CPP/CS-rGO composite scaffolds exhibited highly improved biomineralization and considerable antibacterial activity. More importantly, CPP/CS-rGO composite scaffolds could drive osteogenic differentiation of BMSCs and significantly up-regulate the expression of osteogenesis-related proteins in vitro. Meanwhile, the CS-rGO coating could inhibit aseptic loosening and improve interfacial osseointegration through stimulating bone marrow mesenchymal stem cells (BMSCs) to secrete more osteoprotegerin (OPG) and lesser receptor activator of nuclear factor-κB ligand (RANKL). Overall, the CS-rGO coating adjusts CPP scaffolds’ biological environment interface and endows CPP scaffolds with more bioactivity.

Funder

The Key Research and Development Program of Sichuan Province

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3