Triaxial bioprinting large-size vascularized constructs with nutrient channels

Author:

Zhang Junbiao,Suttapreyasri Srisurang,Leethanakul Chidchanok,Samruajbenjakun BanchaORCID

Abstract

Abstract Bioprinting has demonstrated great advantages in tissue and organ regeneration. However, constructing large-scale tissue and organs in vitro is still a huge challenge due to the lack of some strategies for loading multiple types of cells precisely while maintaining nutrient channels. Here, a new 3D bioprinting strategy was proposed to construct large-scale vascularized tissue. A mixture of gelatin methacrylate (GelMA) and sodium alginate (Alg) was used as a bioink, serving as the outer and middle layers of a single filament in the triaxial printing process, and loaded with human bone marrow mesenchymal stem cells and human umbilical vein endothelial cells, respectively, while a calcium chloride (CaCl2) solution was used as the inner layer. The CaCl2 solution crosslinked with the middle layer bioink during the printing process to form and maintain hollow nutrient channels, then a stable large-scale construct was obtained through photopolymerization and ion crosslinking after printing. The feasibility of this strategy was verified by investigating the properties of the bioink and construct, and the biological performance of the vascularized construct. The results showed that a mixture of 5% (w/v) GelMA and 1% (w/v) Alg bioink could be printed at room temperature with good printability and perfusion capacity. Then, the construct with and without channels was fabricated and characterized, and the results revealed that the construct with channels had a similar degradation profile to that without channels, but lower compressive modulus and higher swelling rate. Biological investigation showed that the construct with channels was more favorable for cell survival, proliferation, diffusion, migration, and vascular network formation. In summary, it was demonstrated that constructing large-scale vascularized tissue by triaxial printing that can precisely encapsulate multiple types of cells and form nutrient channels simultaneously was feasible, and this technology could be used to prepare large-scale vascularized constructs.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabrication of vascularized tissue‐engineered bone models using triaxial bioprinting;Journal of Biomedical Materials Research Part A;2024-02-27

2. 3D/4D printed super reconstructed foods: Characteristics, research progress, and prospects;Comprehensive Reviews in Food Science and Food Safety;2024-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3