Insight into synergetic effects of serum albumin and glucose on the biodegradation behavior of WE43 alloy in simulated body fluid

Author:

Imani AminORCID,Clifford Amanda MORCID,Raman R K SinghORCID,Asselin EdouardORCID

Abstract

Abstract The biodegradation rate of Mg alloy medical devices, such as screws and plates for temporary bone fracture fixation or coronary angioplasty stents, is an increasingly important area of study. In vitro models of the corrosion behavior of these devices use revised simulated body fluid (m-SBF) based on a healthy individual’s blood chemistry. Therefore, model outputs have limited application to patients with altered blood plasma glucose or protein concentrations. This work studies the biodegradation behavior of Mg alloy WE43 in m-SBF modified with varying concentrations of glucose and bovine serum albumin (BSA) to (1) mimic a range of disease states and (2) determine the contributions of each biomolecule to corrosion. Measurements include the Mg ion release rate, electrolyte pH, the extent of hydrogen evolution (as a proxy for corrosion rate), surface morphology, and corrosion product composition and effects. BSA (0.1 g l–1) suppresses the rate of hydrogen evolution (about 30%) after 24 h and—to a lesser degree—Mg2+ release in both the presence and absence of glucose. This effect gets more pronounced with time, possibly due to BSA adsorption on the Mg surface. Electrochemical studies confirm that adding glucose (2 g l–1) to the solution containing BSA (0.1 g l–1) caused a decrease in corrosion resistance (by around 40%), and concomitant increase in the hydrogen evolution rate (from 10.32 to 11.04 mg cm–2 d–1) to levels far beyond the tolerance limits of live tissues.

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3