Fabrication of biomimetic networks using viscous fingering in flexographic printing

Author:

Brumm PaulineORCID,Fritschen AnnaORCID,Doß LaraORCID,Dörsam EdgarORCID,Blaeser Andreas

Abstract

Abstract Mammalian tissue comprises a plethora of hierarchically organized channel networks that serve as routes for the exchange of liquids, nutrients, bio-chemical cues or electrical signals, such as blood vessels, nerve fibers, or lymphatic conduits. Despite differences in function and size, the networks exhibit a similar, highly branched morphology with dendritic extensions. Mimicking such hierarchical networks represents a milestone in the biofabrication of tissues and organs. Work to date has focused primarily on the replication of the vasculature. Despite initial progress, reproducing such structures across scales and increasing biofabrication efficiency remain a challenge. In this work, we present a new biofabrication method that takes advantage of the viscous fingering phenomenon. Using flexographic printing, highly branched, inter-connective channel structures with stochastic, biomimetic distribution and dendritic extensions can be fabricated with unprecedented efficiency. Using gelatin (5%–35%) as resolvable sacrificial material, the feasability of the proposed method is demonstrated on the example of a vascular network. By selectively adjusting the printing velocity (0.2–1.5 m s−1), the anilox roller dip volume (4.5–24 ml m−2) as well as the shear viscosity of the printing material used (10–900 mPas), the width of the structures produced (30–400 µm) as well as their distance (200–600 µm) can be specifically determined. In addition to the flexible morphology, the high scalability (2500–25 000 mm2) and speed (1.5 m s−1) of the biofabrication process represents an important unique selling point. Printing parameters and hydrogel formulations are investigated and tuned towards a process window for controlled fabrication of channels that mimic the morphology of small blood vessels and capillaries. Subsequently, the resolvable structures were casted in a hydrogel matrix enabling bulk environments with integrated channels. The perfusability of the branched, inter-connective structures was successfully demonstrated. The fabricated networks hold great potential to enable nutrient supply in thick vascularized tissues or perfused organ-on-a-chip systems. In the future, the concept can be further optimized and expanded towards large-scale and cost-efficient biofabrication of vascular, lymphatic or neural networks for tissue engineering and regenerative medicine.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Biomedical Engineering,Biomaterials,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vascularized microfluidic models of major organ structures and cancerous tissues;Biomicrofluidics;2023-12-01

2. Forced flows in liquid bridges;Current Opinion in Colloid & Interface Science;2023-10

3. Debossed Contact Printing as a Patterning Method for Paper-Based Electronics;ACS Applied Materials & Interfaces;2023-09-05

4. Vascularization in Bioartificial Parenchymal Tissue: Bioink and Bioprinting Strategies;International Journal of Molecular Sciences;2022-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3