Abstract
Abstract
We propose a scheme to realize various non-Hermitian topological phases in a topolectrical (TE) circuit network consisting of resistors, inductors, and capacitors. These phases are characterized by topologically protected exceptional points and lines. The positive and negative resistive couplings R
g in the circuit provide loss and gain factors which break the Hermiticity of the circuit Laplacian. By controlling R
g, the exceptional lines of the circuit can be modulated, e.g. from open curves to closed ellipses in the Brillouin zone. In practice, the topology of the exceptional lines can be detected by the impedance spectra of the circuit. We also considered finite TE systems with open boundary conditions, the admittance spectra of which exhibit highly tunable zero-admittance states demarcated by boundary points (BPs). The phase diagram of the system shows topological phases that are characterized by the number of their BPs. The transition between different phases can be controlled by varying the circuit parameters and tracked via the impedance readout between the terminal nodes. Our TE model offers an accessible and tunable means of realizing different topological phases in a non-Hermitian framework and characterizing them based on their boundary point and exceptional line configurations.
Funder
National University of Singapore
Subject
General Physics and Astronomy
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献