Local and global stimuli in reinforcement learning

Author:

Jia Danyang,Guo Hao,Song Zhao,Shi Lei,Deng Xinyang,Perc MatjažORCID,Wang Zhen

Abstract

Abstract In efforts to resolve social dilemmas, reinforcement learning is an alternative to imitation and exploration in evolutionary game theory. While imitation and exploration rely on the performance of neighbors, in reinforcement learning individuals alter their strategies based on their own performance in the past. For example, according to the Bush–Mosteller model of reinforcement learning, an individual’s strategy choice is driven by whether the received payoff satisfies a preset aspiration or not. Stimuli also play a key role in reinforcement learning in that they can determine whether a strategy should be kept or not. Here we use the Monte Carlo method to study pattern formation and phase transitions towards cooperation in social dilemmas that are driven by reinforcement learning. We distinguish local and global players according to the source of the stimulus they experience. While global players receive their stimuli from the whole neighborhood, local players focus solely on individual performance. We show that global players play a decisive role in ensuring cooperation, while local players fail in this regard, although both types of players show properties of ‘moody cooperators’. In particular, global players evoke stronger conditional cooperation in their neighborhoods based on direct reciprocity, which is rooted in the emerging spatial patterns and stronger interfaces around cooperative clusters.

Funder

Fok Ying-Tong Education Foundation, China

National Key R&D Program of China

The Slovenian Research Agency

Key Technology Research and Development Program of Science and Technology-Scientific and Technological Innovation Team of Shaanxi Province

National Natural Science Foundation of China

Key Area R&D Program of Guangdong Province

National Natural Science Foundation for Distinguished Young Scholars

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3