Author:
Klöckner C,Kennes D M,Karrasch C
Abstract
Abstract
We introduce a method to evaluate the steady-state non-equilibrium Keldysh–Schwinger Green’s functions for infinite systems subject to both an electric field and a coupling to reservoirs. The method we present exploits a physical quasi-translation invariance, where a shift by one unit cell leaves the physics invariant if all electronic energies are simultaneously shifted by the magnitude of the electric field. Our framework is straightaway applicable to diagrammatic many-body methods. We discuss two flagship applications, mean-field theories as well as a sophisticated second-order functional renormalization group approach. The latter allows us to push the renormalization-group characterization of phase transitions for lattice fermions into the out-of-equilibrium realm. We exemplify this by studying a model of spinless fermions, which in equilibrium exhibits a Berezinskii–Kosterlitz–Thouless phase transition.
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献