A defect detection method for topological phononic materials based on few-shot learning

Author:

Zhang Beini,Luo XiaoORCID,Lyu Yetao,Wu Xiaoxiao,Wen WeijiaORCID

Abstract

Abstract Topological phononic materials have been widely used in many fields, such as topological antennas, asymmetric waveguides, and noise insulation. However, due to the limitations of the manufacturing process, topological protection is vulnerable to some severe defects that may affect the application effect. Therefore, the quality inspection of topological materials is essential to ensure reliable results. Due to the low contrast and irregularity of defects and the similarity of topological phononics, they are difficult to recognize by traditional image processing algorithms, so manual detection is still mainstream at present. But manual detection requires experienced inspectors, which is expensive and time-consuming. In addition, topological materials are expensive to produce, and there is no large publicly available dataset, but deep learning usually relies on large datasets for training. To solve the above problems, we propose an automatic deep learning topology structure defect detection method (ADLTSDM) in this work, which could classify not only the structure of topological materials but also detect the defects of topological phononics based on a small dataset. ADLTSDM exploits the prior knowledge of the topological material structure and achieves an augmentation factor of more than 100 times through the random and fixed interval screenshot algorithm, thus enabling the training of deep neural networks with only two raw data. For defect detection, ADLTSDM has an accuracy of more than 97% and improves detection speed by more than 38% compared with manual detection. For structure classification, ADLTSDM can achieve an accuracy of over 99% and seven times faster speed compared with manual classification. Besides, the detection standard of ADLTSDM is unified, so the accuracy will not be affected by the experience of the inspectors, which has more potential in high-throughput industrial applications.

Funder

Zhongshan-HKUST Research Program

The Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone

2019 Shenzhen-Hong Kong Innovation Circle

Zhuhai Innovation and Entrepreneurship Team Project

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning models in phononic metamaterials;Current Opinion in Solid State and Materials Science;2024-02

2. Analysis of Vehicle Detection Models under Different Weather Conditions Based on Deep Learning;The 3rd International Conference on Electronic Information Technology and Smart Agriculture;2023-12-08

3. Comparison and Analysis of Accuracy of Various Machine Learning Algorithms in Ancient Glass Classification;2023 International Conference on Artificial Intelligence and Automation Control (AIAC);2023-11-17

4. Comparison and analysis of accuracy of various machine learning algorithms in the classification of patients with Parkinson45s disease;Proceedings of the 2023 4th International Symposium on Artificial Intelligence for Medicine Science;2023-10-20

5. Performance Evaluation of Chest X-ray Image Based Deep Learning for COVID-19 Detection;2023 IEEE International Conference on Sensors, Electronics and Computer Engineering (ICSECE);2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3