Abstract
Abstract
We study the formation of a room temperature magnon Bose–Einstein condensate (BEC) in nanoscopic systems and demonstrate that its lifetime is influenced by the spatial confinement. We predict how dipolar interactions and nonlinear magnon scattering assist in the generation of a metastable magnon BEC in energy-quantized nanoscopic devices. We verify our prediction by a full numerical simulation of the Landau–Lisfhitz–Gilbert equation and demonstrate the generation of magnon BEC in confined insulating magnets of yttrium iron garnet. We directly map out the nonlinear magnon scattering processes behind this phase transition to show how fast quantized thermalization channels allow the BEC formation in confined structures. Based on our results, we discuss a new mechanism to manipulate the BEC lifetime in nanoscaled systems. Our study greatly extends the freedom to study dynamics of magnon BEC in realisitc systems and to design integrated circuits for BEC-based applications at room temperature.
Funder
H2020 European Research Council
Norges Forskningsråd
Deutsche Forschungsgemeinschaft
Subject
General Physics and Astronomy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献