Backtracking activation impacts the criticality of excitable networks

Author:

Zhang RenquanORCID,Quan Guoyi,Wang Jiannan,Pei Sen

Abstract

Abstract Networks of excitable elements are widely used to model real-world biological and social systems. The dynamic range of an excitable network quantifies the range of stimulus intensities that can be robustly distinguished by the network response, and is maximized at the critical state. In this study, we examine the impacts of backtracking activation on system criticality in excitable networks consisting of both excitatory and inhibitory units. We find that, for dynamics with refractory states that prohibit backtracking activation, the critical state occurs when the largest eigenvalue of the weighted non-backtracking (WNB) matrix for excitatory units, λ NB E , is close to one, regardless of the strength of inhibition. In contrast, for dynamics without refractory state in which backtracking activation is allowed, the strength of inhibition affects the critical condition through suppression of backtracking activation. As inhibitory strength increases, backtracking activation is gradually suppressed. Accordingly, the system shifts continuously along a continuum between two extreme regimes—from one where the criticality is determined by the largest eigenvalue of the weighted adjacency matrix for excitatory units, λ W E , to the other where the critical state is reached when λ NB E is close to one. For systems in between, we find that λ NB E < 1 and λ W E > 1 at the critical state. These findings, confirmed by numerical simulations using both random and synthetic neural networks, indicate that backtracking activation impacts the criticality of excitable networks.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence maximization based on simplicial contagion models;Physica A: Statistical Mechanics and its Applications;2024-07

2. Targeted influence maximization in complex networks;Physica D: Nonlinear Phenomena;2023-04

3. The stabilization of random Boolean networks through edge immunization;Journal of Statistical Mechanics: Theory and Experiment;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3