Quantum walks-based simple authenticated quantum cryptography protocols for secure wireless sensor networks

Author:

Alanezi Ahmad,Abd El-Latif Ahmed A,Kolivand Hoshang,Abd-El-Atty Bassem

Abstract

Abstract Wireless sensor networks (WSNs) play a crucial role in various applications, ranging from environmental monitoring to industrial automation that require high levels of security. With the development of quantum technologies, many security mechanisms may be hacked due to the promising capabilities of quantum computation. To address this challenge, quantum protocols have emerged as a promising solution for enhancing the security of wireless sensor communications. One of the common types of quantum protocols is quantum key distribution (QKD) protocols, which are investigated to allow two participants with fully quantum capabilities to share a random secret key, while semi-quantum key distribution (SQKD) protocols are designed to perform the same task using fewer quantum resources to make quantum communications more realizable and practical. Quantum walk (QW) plays an essential role in quantum computing, which is a universal quantum computational paradigm. In this work, we utilize the advantages of QW to design three authenticated quantum cryptographic protocols to establish secure channels for data transmission between sensor nodes: the first one is authenticated quantum key distribution (AQKD), the second one is authenticated semi-quantum key distribution (ASQKD) with one of the two participants having limited quantum capabilities, and the last one is ASQKD but both legitimate users possess limited quantum resources. The advantages of the proposed protocols are that the partners can exchange several different keys with the same exchanged qubits, and the presented protocols depend on a one-way quantum communication channel. In contrast, all previously designed SQKD protocols rely on two-way quantum communication. Security analyses prove that the presented protocols are secure against various well-known attacks and highly efficient. The utilization of the presented protocols in wireless sensor communications opens up new avenues for secure and trustworthy data transmission, enabling the deployment of resilient WSNs in critical applications. This work also paves the way for future exploration of quantum-based security protocols and their integration into WSNs for enhanced data protection.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3