Fast generation of cat states in Kerr nonlinear resonators via optimal adiabatic control

Author:

Xue Jiao-Jiao,Yu Ke-Hui,Liu Wen-XiaoORCID,Wang XinORCID,Li Hong-Rong

Abstract

Abstract Macroscopic cat states have been widely studied to illustrate fundamental principles of quantum physics as well as their applications in quantum information processing. In this paper, we propose a quantum speed-up method for the creation of cat states in a Kerr nonlinear resonator (KNR) via optimal adiabatic control. By simultaneously adiabatic tuning the cavity-field detuning and driving field strength, the width of the minimum energy gap between the target trajectory and non-adiabatic trajectory can be widened, which allows us to accelerate the evolution along the adiabatic path. Compared with the previous proposal, preparing cat states only by controlling two-photon pumping strength, our method can prepare the target state with a shorter time, a high-fidelity and a large non-classical volume. It is worth noting that the cat state prepared here is also robust against single-photon loss. Moreover, when we consider the KNR with a large initial detuning, our proposal will create a large-size cat state successfully. This proposal for preparing cat states can be implemented in superconducting quantum circuits, which provides a quantum state resource for quantum information encoding and fault-tolerant quantum computing.

Funder

Hong-Rong Li

Xin Wang

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3