Probing the percolation in the quantum anomalous Hall insulator

Author:

He Mengyun,Huang Yu,Sun Huimin,Fu Yu,Zhang PengORCID,Wang Kang LORCID,He Qing LinORCID

Abstract

Abstract The percolation plays an essential role in the physics of plateau transition, localization, and breakdown in quantum Hall (QH) systems. In practice, it always exists probably due to sample imperfections and has to be addressed before realizing the full potentials of topological electronics and qubits. Here, we investigate the cause, distribution, and number of the percolation in a quantum anomalous Hall (QAH) insulator of an anti-Hall bar geometry with two perimeters, which allows for probing both the inter- and intra-perimeter percolations by injecting currents into either or both perimeters. We discover the dual-QAH effect with opposite chiralities from these two perimeters, which exhibits linear modulations by the currents applied to both perimeters. By solving the formulation of such modulations with the Landauer–Büttiker formalism, the distribution and number of the inter-perimeter percolative channels could be identified. Strikingly, a dissipative constituent is detected in the transport of the QAH state, as revealed by the linear scalings in longitudinal conductivities versus the sum of currents injected to both perimeters, similar to that in the trivial-insulating state. Such a behavior unveils the quasi-2D nature of the intra-perimeter percolation, which superimposes onto and perturbs the dissipationless chiral edge transport. The formation of percolations is ascribed to the joint effect of the electric field, finite conductivity, and sample imperfections.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inducing superconductivity in quantum anomalous Hall regime;Journal of Physics: Condensed Matter;2024-06-18

2. Finite-size effect on quantum percolation in topological insulators;Journal of Physics: Condensed Matter;2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3