Entanglement-based quantum deep learning

Author:

Yang Zhenwei,Zhang XiangdongORCID

Abstract

Abstract Classical deep learning algorithms have aroused great interest in both academia and industry for their utility in image recognition, language translation, decision-making problems and more. In this work, we have provided a quantum deep learning scheme based on multi-qubit entanglement states, including computation and training of neural network in full quantum process. In the course of training, efficient calculation of the distance between unknown unit vector and known unit vector has been realized by proper measurement based on the Greenberger–Horne–Zeilinger entanglement states. An exponential speedup over classical algorithms has been demonstrated. In the process of computation, quantum scheme corresponding to multi-layer feedforward neural network has been provided. We have shown the utility of our scheme using Iris dataset. The extensibility of the present scheme to different types of model has also been analyzed.

Funder

National Natural Science Foundation of China

National key R&D Program of China

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference71 articles.

1. Machine learning: trends, perspectives, and prospects;Jordan;Science,2015

2. Deep learning;LeCun;Nature,2015

3. What kind of graphical model is the brain?;Hinton,2005

4. Greedy layer-wise training of deep networks;Bengio;Proc. Adv. Neural Inf. Process. Syst.,2006

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3