High-efficiency triple-resonant inelastic light scattering in planar optomagnonic cavities

Author:

Pantazopoulos Petros AndreasORCID,Tsakmakidis Kosmas L,Almpanis EvangelosORCID,Zouros Grigorios PORCID,Stefanou NikolaosORCID

Abstract

Abstract Optomagnonic cavities have recently been emerging as promising candidates for implementing coherent photon-magnon interactions, for applications in quantum memories and devices, and next generation quantum networks. A key challenge in the design of such cavities is the attainment of high magnon-mediated optical-to-optical conversion efficiencies, which could, e.g., be exploited for efficient optical interfacing of superconducting qubits, as well as the practicality of the final designs, which ideally should be planar and amenable to on-chip integration. Here, on the basis of a novel time-Floquet scattering-matrix approach, we report on the design and optimization of a planar, multilayer optomagnonic cavity, incorporating a cerium-substituted yttrium iron garnet thin film, magnetized in-plane, and operating in the triple-resonant inelastic light scattering regime. This architecture allows for magnon-mediated optical-to-optical conversion efficiencies of about 5% under realistic conditions, which is orders of magnitude higher than that attained in alternative optomagnonic designs. Our results suggest a viable way forward for realizing practical information inter-conversion, with high efficiencies, between microwaves, strongly coupled to magnons, and optical photons, as well as a platform for fundamental studies of classical and quantum dynamics in magnetic solids and for the implementation of futuristic quantum devices.

Funder

General Secretariat for Research & Technology and Hellenic Foundation for Research & Innovation

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference36 articles.

1. Coherent coupling between a ferromagnetic magnon and a superconducting qubit;Tabuchi;Science,2015

2. Bidirectional conversion between microwave and light via ferromagnetic magnons;Hisatomi;Phys. Rev. B,2016

3. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet;Lachance-Quirion;Sci. Adv.,2017

4. Hybrid quantum systems based on magnonics;Lachance-Quirion;Appl. Phys. Express,2019

5. Coherent conversion between microwave and optical photons-an overview of physical implementations;Lambert,2019

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3