Engineering the radiative dynamics of thermalized excitons with metal interfaces

Author:

Chen Grace HORCID,Li David Z,Butcher AmyORCID,High Alexander A,Chang Darrick E

Abstract

Abstract As a platform for optoelectronic devices based on exciton dynamics, monolayer transition metal dichalcogenides (TMDCs) are often placed near metal interfaces or inside planar cavities. While the radiative properties of point dipoles at metal interfaces has been studied extensively, those of excitons, which are delocalized and exhibit a temperature-dependent momentum distribution, lack a thorough treatment. Here, we analyze the emission properties of excitons in TMDCs near planar metal interfaces and explore their dependence on exciton center-of-mass momentum, transition dipole orientation, and temperature. Defining a characteristic energy scale k B T c = (ℏk)2/2m (k being the radiative wavevector and m the exciton mass), we find that at temperatures TT c and low densities where the momentum distribution can be characterized by Maxwell–Boltzmann statistics, the modified emission rates (normalized to free space) behave similarly to point dipoles. This similarity in behavior arises due to the broad nature of wavevector components making up the exciton and point dipole emission. On the other hand, the narrow momentum distribution of excitons for T < T c can result in significantly different emission behavior as compared to point dipoles. These differences can be further amplified by considering excitons with a Bose Einstein distribution at high phase space densities, such as in a condensate phase. We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude. These insights can help optimize the performance of optoelectronic devices that incorporate 2D semiconductors near metal electrodes and can inform future studies of exciton radiative dynamics at low temperatures. Additionally, these studies show that nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.

Funder

Government of Spain

Agència de Gestió d’Ajuts Universitaris i de Recerca

Fundació Mir-Puig

Fundación Cellex

NSF

Generalitat de Catalunya

H2020 European Research Council

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3