Smith–Purcell radiation of a vortex electron

Author:

Pupasov-Maksimov AORCID,Karlovets DORCID

Abstract

Abstract A wide variety of emission processes by electron wave packets with an orbital angular momentum ℓℏ, called the vortex electrons, can be influenced by a nonparaxial contribution due to their intrinsic electric quadrupole moment. We study Smith–Purcell radiation from a conducting grating generated by a vortex electron, described as a generalized Laguerre–Gaussian packet, which has an intrinsic magnetic dipole moment and an electric quadrupole moment. By using a multipole expansion of the electromagnetic field of such an electron, we employ a generalized surface-current method, applicable for a wide range of parameters. The radiated energy contains contributions from the charge, from the magnetic moment, and from the electric quadrupole moment, as well as from their interference. The quadrupole contribution grows as the packet spreads while propagating, and it is enhanced for large . In contrast to the linear growth of the radiation intensity from the charge with a number of strips N, the quadrupole contribution reveals an N 3 dependence, which puts a limit on the maximal grating length for which the radiation losses stay small. We study spectral-angular distributions of the Smith–Purcell radiation both analytically and numerically and demonstrate that the electron’s vorticity can give rise to detectable effects for non-relativistic and moderately relativistic electrons. On a practical side, preparing the incoming electron’s state in a form of a non-Gaussian packet with a quadrupole moment—such as the vortex electron, an Airy beam, a Schrödinger cat state, and so on—one can achieve quantum enhancement of the radiation power compared to the classical linear regime. Such an enhancement would be a hallmark of a previously unexplored quantum regime of radiation, in which non-Gaussianity of the packet influences the radiation properties much stronger than the quantum recoil.

Funder

Russian Science Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3