Abstract
Abstract
In order to study transport in complex environments, it is extremely important to determine the physical mechanism underlying diffusion and precisely characterize its nature and parameters. Often, this task is strongly impacted by data consisting of trajectories with short length (either due to brief recordings or previous trajectory segmentation) and limited localization precision. In this paper, we propose a machine learning method based on a random forest architecture, which is able to associate single trajectories to the underlying diffusion mechanism with high accuracy. In addition, the algorithm is able to determine the anomalous exponent with a small error, thus inherently providing a classification of the motion as normal or anomalous (sub- or super-diffusion). The method provides highly accurate outputs even when working with very short trajectories and in the presence of experimental noise. We further demonstrate the application of transfer learning to experimental and simulated data not included in the training/test dataset. This allows for a full, high-accuracy characterization of experimental trajectories without the need of any prior information.
Funder
Narodowe Centrum Nauki
“la Caixa” Foundation
European Social Fund
Secretaría de Estado de Investigación, Desarrollo e Innovación
Agència de Gestió d’Ajuts Universitaris i de Recerca
Fundación Cellex
Subject
General Physics and Astronomy
Cited by
98 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献