Topological and quantum stability of low-dimensional crystalline lattices with multiple nonequivalent sublattices*

Author:

Avramov Pavel VORCID,Kuklin Artem VORCID

Abstract

Abstract The terms of topological and quantum stabilities of low-dimensional crystalline carbon lattices with multiple non-equivalent sublattices are coined using theoretical analysis, multilevel simulations, and available experimental structural data. It is demonstrated that complex low-dimensional lattices are prone to periodicity breakdown caused by structural deformations generated by linear periodic boundary conditions (PBC). To impose PBC mandatory limitations for complex low-dimensional lattices, the topology conservation theorem (TCT) is introduced, formulated and proved. It is shown that the lack of perfect filling of planar 2D crystalline space by structural units may cause the formation of (i) structure waves of either variable or constant wavelength; (ii) nanotubes or rolls; (iii) saddle structures; (iv) aperiodic ensembles of irregular asymmetric atomic clusters. In some cases the lattice can be stabilized by aromatic resonance, correlation effects, or van-der-Waals interactions. The effect of quantum instability and periodicity breakdown of infinite structural waves is studied using quasiparticle approach. It is found that both perfect finite-sized, or stabilized structural waves can exist and can be synthesized. It is shown that for low-dimensional lattices prone to breakdown of translation invariance (TI), complete active space of normal coordinates cannot be reduced to a subspace of TI normal coordinates. As a result, constrained TI subspace structural minimization may artificially return a regular point at the potential energy surface as either a global/local minimum/maximum. It is proved that for such lattices, phonon dispersion cannot be used as solid and final proof of either stability or metastability. It is shown that ab initio molecular dynamics (MD) PBC Nosé–Hoover thermostat algorithm constrains the linear dimensions of the periodic slabs in MD box preventing their thermostated equilibration. Based on rigorous TCT analysis, a flowchart algorithm for structural analysis of low-dimensional crystals is proposed and proved to be a powerful tool for theoretical design of advanced complex nanomaterials.

Funder

National Research Foundation of the Republic of Korea

Olle Engkvist Byggmästare foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference143 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3