On the power of one pure steered state for EPR-steering with a pair of qubits

Author:

Song Qiu-ChengORCID,Baker Travis JORCID,Wiseman Howard MORCID

Abstract

Abstract As originally introduced, the Einstein, Podolsky and Rosen (EPR) phenomenon was the ability of one party (Alice) to steer, by her choice between two measurement settings, the quantum system of another party (Bob) into two distinct ensembles of pure states. As later formalized as a quantum information task, EPR-steering can be shown even when the distinct ensembles comprise mixed states, provided they are pure enough and different enough. Consider the scenario where Alice and Bob each have a qubit and Alice performs dichotomic projective measurements. In this case, the states in the ensembles to which she can steer form the surface of an ellipsoid in Bob’s Bloch ball. Further, let the steering ellipsoid have nonzero volume (as it must if the qubits are entangled). It has previously been shown that if Alice’s first measurement setting yields an ensemble comprising two pure states, then this, plus any one other measurement setting, will demonstrate EPR-steering. Here we consider what one can say if the ensemble from Alice’s first setting contains only one pure state , occurring with probability p p . Using projective geometry, we derive the necessary and sufficient condition analytically for Alice to be able to demonstrate EPR-steering of Bob’s state using this and some second setting, when the two ensembles from these lie in a given plane. Based on this, we show that, for a given , if p p is high enough [ ] then any distinct second setting by Alice is sufficient to demonstrate EPR-steering. Similarly, we derive a such that is necessary for Alice to demonstrate EPR-steering using only the first setting and some other setting. Moreover, the expressions we derive are tight; for spherical steering ellipsoids, the bounds coincide: .

Funder

Griffith University and University of Chinese Academy of Sciences

ARC Centre of Excellence for Quantum Computation and Communication Technology

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3