Theory of active particle penetration through a planar elastic membrane

Author:

Daddi-Moussa-Ider AbdallahORCID,Liebchen BennoORCID,Menzel Andreas MORCID,Löwen HartmutORCID

Abstract

Abstract With the rapid advent of biomedical and biotechnological innovations, a deep understanding of the nature of interaction between nanomaterials and cell membranes, tissues, and organs, has become increasingly important. Active penetration of nanoparticles through cell membranes is a fascinating phenomenon that may have important implications in various biomedical and clinical applications. Using a fully analytical theory supplemented by particle-based computer simulations, the penetration process of an active particle through a planar two-dimensional elastic membrane is studied. The membrane is modeled as a self-assembled sheet of particles, uniformly arranged on a square lattice. A coarse-grained model is introduced to describe the mutual interactions between the membrane particles. The active penetrating particle is assumed to interact sterically with the membrane particles. State diagrams are presented to fully characterize the system behavior as functions of the relevant control parameters governing the transition between different dynamical states. Three distinct scenarios are identified. These compromise trapping of the active particle, penetration through the membrane with subsequent self-healing, in addition to penetration with permanent disruption of the membrane. The latter scenario may be accompanied by a partial fragmentation of the membrane into bunches of isolated or clustered particles and creation of a hole of a size exceeding the interaction range of the membrane components. It is further demonstrated that the capability of penetration is strongly influenced by the size of the approaching particle relative to that of the membrane particles. Accordingly, active particles with larger size are more likely to remain trapped at the membrane for the same propulsion speed. Such behavior is in line with experimental observations. Our analytical theory is based on a combination of a perturbative expansion technique and a discrete-to-continuum formulation. It well describes the system behavior in the small-deformation regime. Particularly, the theory allows to determine the membrane displacement of the particles in the trapping state. Our approach might be helpful for the prediction of the transition threshold between the trapping and penetration in real-space experiments involving motile swimming bacteria or artificial active particles.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3