Highly accurate Gaussian process tomography with geometrical sets of coherent states

Author:

Teo Yong SiahORCID,Park Kimin,Shin Seongwook,Jeong Hyunseok,Marek Petr

Abstract

Abstract We propose a practical strategy for choosing sets of input coherent states that are near-optimal for reconstructing single-mode Gaussian quantum processes with output-state heterodyne measurements. We first derive analytical expressions for the mean squared-error that quantifies the reconstruction accuracy for general process tomography and large data. Using such expressions, upon relaxing the trace-preserving (TP) constraint, we introduce an error-reducing set of input coherent states that is independent of the measurement data or the unknown true process—the geometrical set. We numerically show that process reconstruction from such input coherent states is nearly as accurate as that from the best possible set of coherent states chosen with the complete knowledge about the process. This allows us to efficiently characterize Gaussian processes even with reasonably low-energy coherent states. We numerically observe that the geometrical strategy without trace preservation beats all nonadaptive strategies for arbitrary TP Gaussian processes of typical parameter ranges so long as the displacement components are not too large.

Funder

National Research Foundation of Korea

Grantová Agentura České Republiky

European Union’s Horizon 2020 Research and Innovation Framework Programme and MEYS CR

European Union’s Horizon 2020 Research and Innovation Programme

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3