Dipole polarizability of time-varying particles

Author:

Mirmoosa M SORCID,Koutserimpas T TORCID,Ptitcyn G A,Tretyakov S A,Fleury R

Abstract

Abstract Invariance under time translation (or stationarity) is probably one of the most important assumptions made when investigating electromagnetic phenomena. Breaking this assumption is expected to open up novel possibilities and result in exceeding conventional limitations. However, to explore the field of time-varying electromagnetic structures, we primarily need to contemplate the fundamental principles and concepts from a nonstationarity perspective. Here, we revisit one of those key concepts: the polarizability of a small particle, assuming that its properties vary in time. We describe the creation of induced dipole moment by external fields in a nonstationary, causal way, and introduce a complex-valued function, called temporal complex polarizability, for elucidating a nonstationary Hertzian dipole under time-harmonic illumination. This approach can be extended to any subwavelength particle exhibiting electric response. In addition, we also study the classical model of the polarizability of an oscillating electron using the equation of motion whose damping coefficient and natural frequency are changing in time. Next, we theoretically derive the effective permittivity corresponding to time-varying media (comprising free or bound electrons, or dipolar meta-atoms) and explicitly show the differences with the conventional macroscopic Drude–Lorentz model. This paper will hopefully pave the road towards better understanding of nonstationary scattering from small particles and homogenization of time-varying materials, metamaterials, and metasurfaces.

Funder

Academy of Finland

Ulla Tuomisen Säätiö

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3