Controlling stable tunneling in a non-Hermitian spin–orbit coupled bosonic junction

Author:

Luo YunrongORCID,Wang Xuemei,Luo Yuxin,Zhou ZhengORCID,Zeng Zhao-Yun,Luo XiaobingORCID

Abstract

Abstract In this paper, we study how to apply a periodic driving field to control stable spin tunneling in a non-Hermitian spin–orbit (SO) coupled bosonic double-well system. By means of a high-frequency approximation, we obtain the analytical Floquet solutions and their associated quasienergies and thus construct the general non-Floquet solutions of the dissipative SO coupled bosonic system. Based on detailed analysis of the Floquet quasienergy spectrum, the profound effect of system parameters and the periodic driving field on the stability of spin-dependent tunneling is investigated analytically and numerically for both balanced and unbalanced gain–loss between two wells. Under balanced gain and loss, we find that the stable spin-flipping tunneling is preferentially suppressed with the increase of gain–loss strength. When the ratio of Zeeman field strength to periodic driving frequency Ω/ω is even, there is a possibility that continuous stable parameter regions will exist. When Ω/ω is odd, nevertheless, only discrete stable parameter regions are found. Under unbalanced gain and loss, whether Ω/ω is even or odd, we can get parametric equilibrium conditions for the existence of stable spin tunneling. The results could be useful for the experiments of controlling stable spin transportation in a non-Hermitian SO coupled system.

Funder

Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics

Scientific and Technological Research Fund of Jiangxi Provincial Education Department

Hunan Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Scientific Research Fund of Hunan Provincial Education Department

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3