Abstract
Abstract
We study the photon statistics of weak coherent pulses propagating through a cold atomic ensemble in the regime of Rydberg electromagnetically induced transparency. We show experimentally that the value of the second-order autocorrelation function of the transmitted light strongly depends on the position within the pulse and heavily varies during the transients of the pulse. In particular, we show that the falling edge of the transmitted pulse displays much lower values than the rest of the pulse. We derive a theoretical model that quantitatively predicts our results and explains the physical behavior involved. Finally, we use this effect to generate single photons localized within a pulse. We show that by selecting only the last part of the transmitted pulse, the single photons show an antibunching parameter as low as 0.12 and a generation efficiency per trial larger than that possible with probabilistic generation schemes based on atomic ensembles.
Subject
General Physics and Astronomy
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献