Hall conductance of a non-Hermitian Weyl semimetal

Author:

Dey Soumi,Banerjee Ayan,Chowdhury DebashreeORCID,Narayan AwadheshORCID

Abstract

Abstract In recent years, non-Hermitian (NH) topological semimetals have garnered significant attention due to their unconventional properties. In this work, we explore one of the transport properties, namely the Hall conductance of a three-dimensional dissipative Weyl semi-metal formed as a result of the stacking of two-dimensional Chern insulators. We find that unlike Hermitian systems where the Hall conductance is quantized, in presence of non-Hermiticity, the quantized Hall conductance starts to deviate from its usual nature. We show that the non-quantized nature of the Hall conductance in such NH topological systems is intimately connected to the presence of exceptional points. We find that in the case of open boundary conditions, the transition from a topologically trivial regime to a non-trivial topological regime takes place at a different value of the momentum than that of the periodic boundary spectra. This discrepancy is solved by considering the non-Bloch case and the generalized Brillouin zone (GBZ). Finally, we present the Hall conductance evaluated over the GBZ and connect it to the separation between the Weyl nodes, within the non-Bloch theory.

Funder

Indian Institute of Science

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3