Protection of edge transport in quantum spin Hall samples: spin-symmetry based general approach and examples

Author:

Yevtushenko Oleg M,Yudson Vladimir I

Abstract

Abstract Understanding possible mechanisms, which can lead to suppression of helical edge transport in quantum spin Hall (QSH) systems, attracted huge attention right after the first experiments revealing the fragility of the ballistic conductance. Despite the very intensive research and the abundance of theoretical models, the fully consistent explanation of the experimental results is still lacking. We systematize various theories of helical transport with the help of the spin conservation analysis which allows one to single out setups with the ballistic conductance being robustly protected regardless of the electron backscattering. First, we briefly review different theories of edge transport in the QSH samples with and without the spin axial symmetry of the electrons including those theoretical predictions which are not consistent with the spin conservation analysis and, thus, call for a deeper study. Next, we illustrate the general approach by a detailed study of representative examples. One of them addresses the helical edge coupled to an array of Heisenberg-interacting magnetic impurities (MIs) and demonstrates that the conductance remains ballistic even if the time-reversal symmetry on the edge is (locally) broken but the total spin is conserved. Another example focuses on the effects of the space-fluctuating spin–orbit interaction on the QSH edge. It reveals weakness of the protection in several cases, including, e.g. the presence of either the U(1)-symmetric, though not fully isotropic, MIs or generic electron–electron interactions.

Funder

Deutsche Forschungsgemeinschaft

The Basic Research Program of HSE

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference85 articles.

1. Colloquium: Topological insulators;Hasan;Rev. Mod. Phys.,2010

2. Topological insulators and superconductors;Qi;Rev. Mod. Phys.,2011

3. Z 2 topological order and the quantum spin Hall effect;Kane;Phys. Rev. Lett.,2005

4. Quantum spin Hall effect in graphene;Kane;Phys. Rev. Lett.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3