Jerky active matter: a phase field crystal model with translational and orientational memory

Author:

te Vrugt MichaelORCID,Jeggle JulianORCID,Wittkowski RaphaelORCID

Abstract

Abstract Most field theories for active matter neglect effects of memory and inertia. However, recent experiments have found inertial delay to be important for the motion of self-propelled particles. A major challenge in the theoretical description of these effects, which makes the application of standard methods very difficult, is the fact that orientable particles have both translational and orientational degrees of freedom which do not necessarily relax on the same time scale. In this work, we derive the general mathematical form of a field theory for soft matter systems with two different time scales. This allows to obtain a phase field crystal model for active particles with translational and orientational memory. Notably, this theory is of third order in temporal derivatives and can thus be seen as a spatiotemporal jerky dynamics. We obtain the phase diagram of this model, which shows that, unlike in the passive case, the linear stability of the liquid state depends on the damping coefficients. Moreover, we investigate sound waves in active matter. It is found that, in active fluids, there are two different mechanisms for sound propagation. For certain parameter values and sufficiently high frequencies, sound mediated by polarization waves experiences less damping than usual passive sound mediated by pressure waves of the same frequency. By combining the different modes, acoustic frequency filters based on active fluids could be realized.

Funder

Studienstiftung des Deutschen Volkes

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Passive and active field theories for disease spreading;Journal of Physics A: Mathematical and Theoretical;2024-07-22

2. Memory of elastic collisions drives high minority spin and oscillatory entropy in underdamped chiral spinners;Communications Physics;2024-04-27

3. Biaxial nematic order in fundamental measure theory;The Journal of Chemical Physics;2024-03-05

4. Approach to Fast Transformations;Phase Field Theory in Materials Physics;2024

5. How to derive a predictive field theory for active Brownian particles: a step-by-step tutorial;Journal of Physics: Condensed Matter;2023-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3